Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
PLoS One ; 19(2): e0286672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408064

RESUMO

This ex vivo study aimed to investigate surface roughness and substance loss after treatment with different professional cleaning methods and to determine whether subsequent polishing with a rubber cup and polishing paste is necessary. Samples (flat and natural surfaces) of human enamel and dentin were prepared (baseline) and treated with either a curette, air-polishing with erythritol, a rubber cup and polishing paste, or a combination thereof (treatment). Subsequently, all samples were immersed in an ultrasonic bath (ultrasonic) to remove residues from the treatment procedures. The surface roughness values sRa and sRz as well as tissue loss were measured profilometrically. Linear regression models were used to compare group differences (roughness and loss) considering the corresponding baseline value. The significance level was set at p<0.05. sRa increased significantly after treatment with curettes or air-polishing with erythritol in both enamel (p<0.001) and dentin (p<0.001) of flat samples. The same effect was observed for sRz in dentin (p<0.001) but not for enamel compared to negative control. Polishing with a rubber cup and paste alone had no significant effect on roughness values. When combined with other treatments, the effect of curette or air-polishing with erythritol dominated the effect. In enamel, none of the tested methods led to measurable tissue loss. In dentin, air-polishing with erythritol caused ≤50% tissue loss compared to the curette. Conclusively, for enamel, treatment effects on roughness were measurable but of limited clinical relevance. For dentin, air-polishing resulted in a smaller but insignificant roughness increase and less tissue loss compared to the curette. Polishing with a rubber cup and paste did not affect surface roughness. Regarding the clinical application, the use of air-polishing seems to be a less invasive procedure than using a curette; polishing with rubber cup and paste offers no advantage in terms of reducing roughness as a final procedure.


Assuntos
Eritritol , Borracha , Humanos , Propriedades de Superfície , Polimento Dentário
2.
Future Microbiol ; 19: 241-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38294280

RESUMO

Oral biofilm is the main cause of pathologies affecting the hard and soft oral tissues around teeth. Its main components are the periodontal pathogens and other bacteria of the supragingival and subgingival biofilm. Different alternative strategies that could be adjuvants to the usual periodontal treatments used to eliminate biofilms are available. One of these methods is antimicrobial photodynamic therapy using VIS and water-filtered infrared-A combined with a photosensitizer. In this review, different recent studies were collected to evaluate the antimicrobial effects of antimicrobial photodynamic therapy and the effectiveness of different types of photosensitizers.


This review summarizes different types of photodynamic therapy, a type of treatment that uses light to kill cells, which can be used to decontaminate the mouth and teeth. There are many bacteria in our mouths and on the surface of our teeth that can cause infections, such as dental caries, periodontitis and peri-implantitis. This review also looks at how effective these treatments are and suggests the use of clinical trials to confirm our findings.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Água/farmacologia , Anti-Infecciosos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Biofilmes
3.
Eur J Oral Sci ; 132(2): e12967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105518

RESUMO

The aim of the study was to evaluate the effects of erosion and abrasion on resin-matrix ceramic CAD/CAM materials [CERASMART (GC); VITA ENAMIC (VITA Zahnfabrik); Lava Ultimate (3 M)] in comparison to feldspar ceramic (VITABLOCS Mark II, VITA Zahnfabrik) and resin composite materials (ceram.x universal, Dentsply Sirona). Daily brushing and acid exposure were simulated using a brushing apparatus and a solution of 0.5 vol% citric acid. Microhardness, surface roughness, and substance loss were measured at baseline and after simulation of 1 and 3 years of function. All materials showed a decrease in microhardness after 3 years and an increase in surface roughness (Ra) after 1 and 3 years. The Ra increase was statistically significantly lower for the resin-matrix ceramics than for feldspar ceramic and similar to composite material. After 3 years, only feldspar ceramic showed no significant substance loss. In conclusion, resin-matrix ceramics demonstrate reduced roughening compared to feldspar ceramics, potentially improving restoration longevity by preventing plaque buildup, but differences in abrasion resistance suggest the need for further material-specific research. Future research should aim to replicate clinical conditions closely and to transition to in vivo trials.


Assuntos
Cerâmica , Porcelana Dentária , Compostos de Potássio , Propriedades de Superfície , Teste de Materiais , Resinas Compostas , Silicatos de Alumínio , Desenho Assistido por Computador , Materiais Dentários
4.
Nutrients ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068846

RESUMO

Antimicrobial photodynamic treatment (aPDT) with visible light plus water-filtered infrared-A irradiation (VIS-wIRA) and natural single- or multi-component photosensitizers (PSs) was shown to have potent antimicrobial activity. The aim of this study was to obtain information on the antimicrobial effects of aPDT-VIS-wIRA with lingonberry extract (LE) against bacteria that play a role in oral health. Planktonic bacterial cultures of the Gram-positive E. faecalis T9, S. mutans DSM20523, S. oralis ATCC 35037 and S. sobrinus PSM 203513, the Gram-negative N. oralis 14F2 FG-15-7B, F. nucleatum ATCC 25586, and V. parvula DSM, the anaerobic F. nucleatum ATCC 25586 and V. parvula DSM 2008, and the total mixed bacteria from pooled saliva and supra- and subgingival plaques of volunteers were all treated and compared. aPDT-VIS-wIRA with LE as PS significantly (p < 0.008) reduced the growth of all tested Gram-positive, Gram-negative, as well as aerobic and anaerobic bacterial strains, whereas without irradiation no reductions were seen (p < 0.0001). NaCl, with or without irradiation, was ineffective. After treatment with CHX 0.2%, the highest killing rate (100%) was observed, and no bacteria (0 log10 CFU) were cultivable. The method also significantly reduced all of the bacteria present in saliva and in the gingival biofilms. Three-dimensional visualization of viable and non-viable microorganisms revealed that LE penetrated deeper into the cell wall layers than CHX 0.2%. LE was an appropriate PS for eradicating microorganisms with VIS-wIRA, either in their planktonic form or in saliva and gingival plaque biofilms. These results encourage further investigation in order to determine which LE compounds contribute to the photosensitizing effect and to evaluate the size of the effect on maintaining oral health.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Vaccinium vitis-Idaea , Humanos , Fármacos Fotossensibilizantes/farmacologia , Saliva/microbiologia , Fotoquimioterapia/métodos , Água/farmacologia , Plâncton , Luz , Biofilmes , Anti-Infecciosos/farmacologia , Bactérias
5.
Clin Oral Investig ; 28(1): 19, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141103

RESUMO

OBJECTIVES: Low-frequency, low-intensity ultrasound is commonly utilized in various dental research fields to remove biofilms from surfaces, but no clear recommendation exists in dental studies so far. Therefore, this study aims to optimize the sonication procedure for the dental field to efficiently detach bacteria while preserving viability. MATERIALS AND METHODS: Initial biofilm was formed in vivo on bovine enamel slabs (n = 6) which were worn by four healthy participants for 4 h and 24 h. The enamel slabs covered with biofilm were then ultrasonicated ex vivo for various time periods (0, 1, 2, 4, 6 min). Colony-forming units were determined for quantification, and bacteria were identified using MALDI-TOF. Scanning electron microscopic images were taken to also examine the efficiency of ultrasonications for different time periods. RESULTS: Ultrasonication for 1 min resulted in the highest bacterial counts, with at least 4.5-fold number compared to the non-sonicated control (p < 0.05). Most bacteria were detached within the first 2 min of sonication, but there were still bacteria detached afterwards, although significantly fewer (p < 0.0001). The highest bacterial diversity was observed after 1 and 2 min of sonication (p < 0.03). Longer sonication periods negatively affected bacterial counts of anaerobes, Gram-negative bacteria, and bacilli. Scanning electron microscopic images demonstrated the ability of ultrasound to desorb microorganisms, as well as revealing cell damage and remaining bacteria. CONCLUSIONS: With the use of low-frequency, low-intensity ultrasound, significantly higher bacterial counts and diversity can be reached. A shorter sonication time of 1 min shows the best results overall. CLINICAL RELEVANCE: This standardization is recommended to study initial oral biofilms aged up to 24 h to maximize the outcome of experiments and lead to better comparability of studies.


Assuntos
Biofilmes , Pesquisa em Odontologia , Animais , Bovinos , Humanos , Idoso , Bactérias , Esmalte Dentário/diagnóstico por imagem , Carga Bacteriana
6.
Dent Mater ; 39(11): 994-1003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730495

RESUMO

OBJECTIVE: The aim was to investigate the effect of particles released during grinding of dental composites on human gingival keratinocytes (HGK). METHODS: Specimens from Filtek™ Supreme XTE and ceram.x® universal were prepared and ground to dust. The dust was filtered (≤ 5 µm) and the particle size distribution was examined using NANO-flex®-180° dynamic light scattering (DLS). Suspensions at five concentrations (3, 10, 30, 100 and 300 µg/mL) were prepared using keratinocyte growth medium (KGM). These suspensions, as well as a positive (CuO) and a negative control (KGM) were added to HGK. The cells treated with Filtek™ Supreme XTE suspensions were analyzed by real-time monitoring using RTCA iCELLigence™. In addition, light and scanning electron microscopic images of the exposed cells were taken. Indirect immunofluorescence staining was performed to detect the extracellular matrix protein fibronectin. RESULTS: In distilled water, DLS showed similar particles' range (171.9 nm- 2.7 µm) for both composites. In saliva, larger particles were detected (Filtek™ Supreme XTE: 243 nm-6,5 µm; ceram.x® universal: 204 nm- 4,6 µm). iCELLigence™ revealed similar results of cell growth parameters for HGK incubated with composite dust (≤ 5 µm) at different concentrations. The microscopic images indicated unaltered cell structures and formation of large agglomerates with high particle concentration (> 100 µg/mL). Exposure to composite dust resulted in upregulation of fibronectin expression. SIGNIFICANCE: Grinding of dental composite materials generates dust particles of different sizes. The particle size distribution seems to be more influenced by the suspending medium than the material itself. While cell growth of HGK seem not to be affected by the particles, an upregulation of fibronectin in the intercellular space concomitant by increasing particle concentration may indicate an increase of cell migration/mobility.

7.
Dent Mater ; 39(8): 693, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357045

RESUMO

OBJECTIVE: The aim of this study was the development of a novel in-vitro method to evaluate the intraoral release of wear particles with a diameter< 1 µm from dental restorative materials. METHODS: Test fixtures for a dual-axis chewing simulator (CS-4.8, SD Mechatronik, Feldkirchen-Westerham, Germany), consisting of three components to mount the specimens and a solvent (distilled water) as well as a zirconia antagonist to transfer the masticatory forces onto the specimen was developed. Ceram.x Spectra™ ST HV (CS) and Filtek™ Supreme XTE (FS) specimens (n = 3) were fixed into the mounts and immersed in 25 ml solvent. All specimens were subjected to 500.000 wear cycles with a load of 49 N. The particle size distribution of the suspensions were examined by dynamic light scattering (DLS). The collected particles were characterised by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For wear quantification, the surfaces of the specimens were photo-optically scanned and the wear was measured. For the statistical analysis, one-way ANOVA and post-hoc Scheffé tests were applied. RESULTS: DLS showed particle diameters< 1 µm (CS: 18.06 nm-1.64 µm, FS: 72.30 nm-2.31 µm). SEM/EDS indicated an association between the detected elements and the materials' composition. FS showed significantly higher volume loss (p = 0.007) and maximum depth of the wear profile (p = 0.005) than CS, but no significant differences in the surface loss (p = 0.668). SIGNIFICANCE: The novel method is able to detect material dependent particles to the size of nanoscale after in-vitro abrasion.


Assuntos
Resinas Compostas , Nanopartículas , Resinas Compostas/química , Microscopia Eletrônica de Varredura , Solventes , Teste de Materiais , Propriedades de Superfície , Desgaste de Restauração Dentária , Porcelana Dentária , Materiais Dentários , Zircônio
8.
Bioengineering (Basel) ; 10(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36978714

RESUMO

Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as "trophic mediators". Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.

9.
Nutrients ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558547

RESUMO

BACKGROUND: The role of diet and nutrition in the prevention of oral diseases has recently gained increasing attention. Understanding the influence of diet on oral microbiota is essential for developing meaningful prevention approaches to oral diseases, and the identification of typical and atypical responders may contribute to this. METHODS: We used data from an experimental clinical study in which 11 participants were exposed to different dietary regimens in five consecutive phases. To analyse the influence of additional nutritional components, we examined changes in bacterial concentrations measured by culture techniques compared to a run-in phase. A measure of correspondence between the mean and individual patterns of the bacterial composition is introduced. RESULTS: The distance measures introduced showed clear differences between the subjects. In our data, two typical and three atypical responders appear to have been identified. CONCLUSIONS: The proposed method is suitable to identify typical and atypical responders, even in small datasets. We recommend routinely performing such analyses.


Assuntos
Microbiota , Humanos , Dieta , Estado Nutricional , Bactérias
10.
Antibiotics (Basel) ; 11(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290078

RESUMO

Due to increasing rates of antibiotic resistance and very few novel developments of antibiotics, it is crucial to understand the mechanisms of resistance development. The aim of the present study was to investigate the adaptation of oral bacteria to the frequently used oral antiseptic chlorhexidine digluconate (CHX) and potential cross-adaptation to antibiotics after repeated exposure of supragingival plaque samples to subinhibitory concentrations of CHX. Plaque samples from six healthy donors were passaged for 10 days in subinhibitory concentrations of CHX, while passaging of plaque samples without CHX served as control. The surviving bacteria were cultured on agar plates and identified with Matrix-assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF). Subsequently, the minimum inhibitory concentrations (MIC) of these isolates toward CHX were determined using a broth-microdilution method, and phenotypic antibiotic resistance was evaluated using the epsilometertest. Furthermore, biofilm-forming capacities were determined. Repeated exposure of supragingival plaque samples to subinhibitory concentrations of CHX led to the selection of oral bacteria with 2-fold up to 4-fold increased MICs toward CHX. Furthermore, these isolates showed up to 12-fold increased MICs towards some antibiotics such as erythromycin and clindamycin. Conversely, biofilm-forming capacity was decreased. In summary, this study shows that oral bacteria are able to adapt to CHX, while also decreasing their susceptibility to antibiotics.

11.
Dent Mater ; 38(12): 1886-1899, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210220

RESUMO

OBJECTIVES: The aim was to evaluate the release of particles from dental materials during wet and dry grinding and test their effects on human lung epithelia cells in-vitro. METHODS: Four dental restorative materials were used: two composites [Ceram.x® universal (Dentsply Sirona) and Filtek™ Supreme XTE (3 M)], one ceramic [VITABLOCS® Mark II (VITAy)] and a ceramic-resin material [Lava™ Ultimate (3 M)]. Material samples were ground to powder under standardized wet and dry conditions in an isolated dental room. During grinding, the particle concentrations were measured with LAS and CPC. Baseline values were measured before grinding. The particles' size was evaluated using DLS and SEM. Water was used as control. The cytotoxicity and inflammatory response of the lung cells (A549) after exposure to different concentrations (1, 3, 10, 30, 100, 300 µg/mL) of the generated dust were analyzed with LDH, WST-1 and ELISA. RESULTS: LAS and CPC revealed a high concentration of particles< 10 µm and< 1 µm respectively, into the air. Particles showed high tendency to agglomerate. DLS showed particle size distribution between 150 nm and 18 µm independently of the material composition. All materials induced significant effects (p < 0.05) on the cell membrane integrity and viability of the A549 cells. Only the ceramic particles showed a significant increase in hydroxyl radical formation at low concentrations (p < 0.05), for both wet and dry conditions. All materials except ceramic, induced a significant release of IL-8 in A549 cells at 300 µg / mL (p < 0.05). SIGNIFICANCE: Wet and dry grinding of dental materials result in release of ultrafine and fine particulate matter into the air. The in-vitro findings on the cellular response of lung cells to generated dust indicate a potential risk for human health due inhalation of the released particles. The use of water-cooling seems to be beneficial resulting in reduced release of particles compared to dry grinding.


Assuntos
Poeira , Pulmão , Humanos , Poeira/análise , Tamanho da Partícula , Células Epiteliais , Água
12.
Dent Mater ; 38(9): 1532-1546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914965

RESUMO

OBJECTIVES: The aim of this study was to investigate the influence of hybrid CAD/CAM-blocks on immortalized human gingival keratinocytes (HGK). METHODS: Samples of two different hybrid CAD/CAM materials [Lava™ Ultimate (3 M); VITA Enamic® (VITA Zahnfabrik)], a composite material [ceram.x® universal (Dentsply Sirona)] and a CAD/CAM ceramic [VITABLOCS® (VITA Zahnfabrik)] were stored in cell culture medium for 72 h to prepare eluates according to ISO-10993-12:2012. HGK were exposed to eluates for 6, 24 and 48 h. Cell monitoring was performed by RTCA iCELLigence™ system. The morphological changes were evaluated using phase contrast imaging. Specific biomarkers of apoptosis and terminal differentiation (Caspase-3, Involucrin) were analyzed semi quantitatively by indirect immunofluorescence (IIF). Protein levels and activation of MAP kinases ERK1/2 (p44/42) were quantified by Western blot. Data were statistically analyzed by unpaired t-test (p < 0.05). RESULTS: Regarding Vita Enamic® and Lava™ Ultimate, results of RTCA iCELLigence™ and Western blots showed no statistically significant differences (p > 0.05) compared to the negative control (HGK in native keratinocyte growth medium). No aberrant expression of Caspase-3 and Involucrin was detected in cells incubated with Vita® Enamic eluates Cells incubated with Lava™ Ultimate showed a higher expression of Involucrin after 24 h of incubation compared to the negative control. Statistically significant differences (p < 0.01) were found between cells incubated with ceram.x® universal and the negative control in RTCA iCELLigence™ assay and in quantitative measurements of Western blots after 6 h against phospho-p44/42 (p = 0.044). Increased expression of Caspase-3 and Involucrin were detected by IIF in cells after incubation with eluates of ceram.x® universal. SIGNIFICANCE: The present data show no significant effect of hybrid materials on analyzed functions of cell behavior. A cytotoxic influence of ceram.x® universal eluates was observed in HGK in terms of a strong modulation of proliferation, morphology and protein expression.


Assuntos
Cerâmica , Desenho Assistido por Computador , Caspase 3/farmacologia , Gengiva , Humanos , Queratinócitos , Teste de Materiais
13.
Front Microbiol ; 13: 934525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847089

RESUMO

Antiseptics are widely used in dental practice and included in numerous over-the-counter oral care products. However, the effects of routine antiseptic use on microbial composition of oral biofilms and on the emergence of resistant phenotypes remain unclear. Microcosm biofilms were inoculated from saliva samples of four donors and cultured in the Amsterdam Active Attachment biofilm model for 3 days. Then, they were treated two times daily with chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) for a period of 7 days. Ecological changes upon these multiple antiseptic treatments were evaluated by semiconductor-based sequencing of bacterial 16S rRNA genes and identification of amplicon sequence variants (ASVs). Furthermore, culture-based approaches were used for colony-forming units (CFU) assay, identification of antiseptic-resistant phenotypes using an agar dilution method, and evaluation of their antibiotic susceptibilities. Both CHX and CPC showed only slight effects on CFU and could not inhibit biofilm growth despite the two times daily treatment for 7 days. Both antiseptics showed significant ecological effects on the microbial compositions of the surviving microbiota, whereby CHX led to enrichment of rather caries-associated saccharolytic taxa and CPC led to enrichment of rather gingivitis-associated proteolytic taxa. Antiseptic-resistant phenotypes were isolated on antiseptic-containing agar plates, which also exhibited phenotypic resistance to various antibiotics. Our results highlight the need for further research into potential detrimental effects of antiseptics on the microbial composition of oral biofilms and on the spread of antimicrobial resistance in the context of their frequent use in oral healthcare.

14.
Pharmaceutics ; 14(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745858

RESUMO

Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4',6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.

15.
Antibiotics (Basel) ; 11(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625332

RESUMO

Despite the wide-spread use of antiseptics in dental practice and oral care products, there is little public awareness of potential risks associated with antiseptic resistance and potentially concomitant cross-resistance. Therefore, the aim of this study was to investigate potential phenotypic adaptation in 177 clinical isolates of early colonizers of dental plaque (Streptococcus, Actinomyces, Rothia and Veillonella spp.) upon repeated exposure to subinhibitory concentrations of chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) over 10 passages using a modified microdilution method. Stability of phenotypic adaptation was re-evaluated after culture in antiseptic-free nutrient broth for 24 or 72 h. Strains showing 8-fold minimal inhibitory concentration (MIC)-increase were further examined regarding their biofilm formation capacity, phenotypic antibiotic resistance and presence of antibiotic resistance genes (ARGs). Eight-fold MIC-increases to CHX were detected in four Streptococcus isolates. These strains mostly exhibited significantly increased biofilm formation capacity compared to their respective wild-type strains. Phenotypic antibiotic resistance was detected to tetracycline and erythromycin, consistent with the detected ARGs. In conclusion, this study shows that clinical isolates of early colonizers of dental plaque can phenotypically adapt toward antiseptics such as CHX upon repeated exposure. The underlying mechanisms at genomic and transcriptomic levels need to be investigated in future studies.

16.
Biomedicines ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625693

RESUMO

The widespread increase of antibiotic resistance highlights the need for alternative treatments such as antimicrobial photodynamic therapy (aPDT). This study aimed to evaluate the antimicrobial behavior and cytotoxicity of aPDT with indocyanine green (ICG) in combination with visible light (Vis) and water-filtered infrared A (wIRA). Representative periodontal bacteria (Parvimonas micra, Atopobium riame, Slackia exigua, Actinomyces naeslundii, Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Prevotella nigrescens) and subgingival in situ biofilms from periodontal patients were treated with aPDT for 5 min. ICG was used at different concentrations (50-500 µg/mL) and the number of viable cells was determined in colony forming units (CFU). Untreated negative controls and 0.2% chlorhexidine as a positive control were also prepared. The cytotoxicity test on human keratinocytes in vitro was analyzed with the AlamarBlue assay after 5, 10, and 20 min, with four ICG concentrations, and at two temperatures (room temperature and 37 °C). The tested periodontal pathogens treated with aPDT were eliminated in a range between 1.2 and 6.7 log10 CFU, except for A. naeslundii, which was killed at a lower range. The subgingival biofilm treated with aPDT expressed significant differences to the untreated controls except for at 300 µg/mL ICG concentration. The cytotoxicity was directly related to the concentration of ICG and irradiation time. These observations raise questions concerning the use of this specific aPDT as an adjuvant to periodontal treatments due to its possible toxicity towards human gingival cells.

17.
Clin Oral Investig ; 26(6): 4369-4380, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138461

RESUMO

OBJECTIVE: In the last few decades, there has been a growing worldwide interest in the use of plant extracts for the prevention of oral diseases. The main focus of this interest lies in the identification and isolation of substances that limit the formation of microbial biofilm which plays a major role in the development of caries, periodontitis, and peri-implantitis. In this clinical ex vivo study, we investigated the antimicrobial effects of Rosmarinus officinalis extract against oral microorganisms within in situ initial oral biofilms. MATERIALS AND METHODS: Initial in situ biofilm samples (2 h) from six healthy volunteers were treated ex vivo with R. officinalis extract at concentrations of 20 mg/ml and 30 mg/ml. The number of viable bacterial cells was determined by counting the colony-forming units. All surviving bacteria were isolated in pure cultures and identified using MALDI-TOF and biochemical testing procedures. Additionally, live/dead staining in combination with epifluorescence microscopy was used for visualizing the antimicrobial effects in the initial biofilms. RESULTS: The number of colony-forming units in the R. officinalis-treated biofilms was significantly lower than in the untreated controls (p < 0.001). The reduction range of log10 was 1.64-2.78 and 2.41-3.23 for aerobic and anaerobic bacteria, respectively. Regarding the bacterial composition, large intra- and interindividual variability were observed. Except for Campylobacter spp., the average amount of all bacterial taxa was lower after treatment with R. officinalis than in the untreated biofilms. A total of 49 different species were detected in the untreated biofilms, while only 11 bacterial species were detected in the R. officinalis-treated biofilms. Live/dead staining confirmed that the R. officinalis-treated biofilms had significantly lower numbers of surviving bacteria than the untreated biofilms. CONCLUSIONS: The treatment with R. officinalis extract has a significant potential to eliminate microbial oral initial biofilms. CLINICAL RELEVANCE: The results of this study encourage the use of R. officinalis extracts in biofilm control and thus in the treatment of caries and periodontitis as a herbal adjuvant to synthetic substances.


Assuntos
Anti-Infecciosos , Rosmarinus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Biofilmes , Humanos , Extratos Vegetais/farmacologia , Rosmarinus/química
18.
Clin Oral Investig ; 26(6): 4575-4586, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218427

RESUMO

OBJECTIVE: The persistence of pathogenic microorganisms in root canals is the most common reason for the failure of root canal treatment and the necessity of a root filling treatment, which results in an uncertain prognosis due to technical complexity and the variety of highly adaptable microorganisms. This study evaluated the effect of passive ultrasonic irrigation (PUI) on the outcome of the microbial analysis of root canal-treated teeth with persistent or recurrent apical inflammation in vivo. MATERIALS AND METHODS: Sample collection was performed after root filling removal (sample S1, control group) and after PUI with NaCl (sample S2) using sterile paper points. In total, 19 samples were obtained. Quantification was performed by means of serial dilution of the samples. Subcultivated pure cultures were identified using MALDI-TOF MS complemented by the Vitek-2-System or PCR, followed by sequencing of the 16S rRNA gene. The results of the samples (S1 and S2) were evaluated regarding their bacterial count and composition. RESULTS: The total count of bacteria and the number of aerobic/facultative anaerobic microorganisms significantly increased in the S2-samples after application of PUI. The number of obligate anaerobic microorganisms showed an increase after PUI, although it was not significant. We detected 12 different aerobic/facultative anaerobic microorganisms before PUI, and in 21 cases after PUI. Two different obligate anaerobic microorganisms were found in S1 samples compared to nine different species in S2 samples. CONCLUSIONS: PUI is a powerful method for detaching bacteria in infected root canals and enables a more precise analysis of the etiology of persistent endodontic infections. CLINICAL RELEVANCE: This study indicates that PUI exerts a positive cleansing effect and adds to the accessibility of microorganisms during the application of bactericidal rinsing solution in root canal treatments.


Assuntos
Cavidade Pulpar , Dente , Bactérias , Cavidade Pulpar/microbiologia , RNA Ribossômico 16S , Irrigantes do Canal Radicular/uso terapêutico , Preparo de Canal Radicular , Tratamento do Canal Radicular/métodos , Hipoclorito de Sódio , Irrigação Terapêutica , Ultrassom
19.
Antibiotics (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671205

RESUMO

This study aimed to evaluate the in vivo initial microbial adhesion of oral microorganisms on the biomaterial Biodentine compared to MTA and AH Plus. Cylindrical samples of the materials were prepared, and dentin slabs served as a control. An individual intraoral lower jaw splint served as a carrier for the samples and was worn by six volunteers. The specimens were worn for 120 min. Adherent bacteria were quantified by determining the colony-forming units (CFUs), while the visualization and quantification of total adherent microorganisms were facilitated by using DAPI and live/dead staining combined with fluorescence microscopy. Bovine dentin had a significantly higher number of aerobic CFUs compared to Biodentine (p = 0.017) and MTA (p = 0.013). The lowest amounts of DAPI-stained adherent microorganisms were quantified for Biodentine (15% ± 9%) and the control (18% ± 9%), while MTA showed the highest counts of initially adherent microorganisms (38% ± 10%). Significant differences were found for MTA and Biodentine (p = 0.004) as well as for MTA and the control (p = 0.021) and for AH Plus and the control (p = 0.025). Biodentine inhibited microbial adherence, thereby yielding an antimicrobial effectivity similar to that of MTA.

20.
Nutrients ; 13(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34836285

RESUMO

Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Inula/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Contagem de Colônia Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Boca/microbiologia , Antissépticos Bucais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...